
Journal of Global Optimization 26: 3–24, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

3

A Multi-Stage Stochastic Integer Programming
Approach for Capacity Expansion under
Uncertainty

SHABBIR AHMED1,∗, ALAN J. KING2 and GYANA PARIJA2

1School of Industrial & Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive,
Atlanta, GA 30332, USA, e-mail: sahmed@isye.gatech.edu; 2Mathematical Sciences Division, IBM
T. J. Watson Research Center, Yorktown Heights, NY 10598, USA, e-mail: kingaj@us.ibm.com;
parija@us.ibm.com

(Received: November 15, 2000. Revised: July 24, 2001.)

Abstract. This paper addresses a multi-period investment model for capacity expansion in an uncer-
tain environment. Using a scenario tree approach to model the evolution of uncertain demand and cost
parameters, and fixed-charge cost functions to model the economies of scale in expansion costs, we
develop a multi-stage stochastic integer programming formulation for the problem. A reformulation
of the problem is proposed using variable disaggregation to exploit the lot-sizing substructure of the
problem. The reformulation significantly reduces the LP relaxation gap of this large scale integer
program. A heuristic scheme is presented to perturb the LP relaxation solutions to produce good
quality integer solutions. Finally, we outline a branch and bound algorithm that makes use of the
reformulation strategy as a lower bounding scheme, and the heuristic as an upper bounding scheme,
to solve the problem to global optimality. Our preliminary computational results indicate that the
proposed strategy has significant advantages over straightforward use of commercial solvers.
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1. Introduction

Planning for capacity expansion forms a crucial part of the strategic level decision
making in many applications. Examples can be found in heavy process indus-
tries [26, 36], communication networks [10, 22, 37], electric utilities [30, 31],
automobile industries [14], service industries [4, 5], and more recently, in elec-
tronic goods and semiconductor industries [6, 35, 38]. In all of these applications,
the expansion of production capacity requires the commitment of substantial cap-
ital resources over long periods of time. Furthermore, the economies-of-scale in the
expansion costs, as well as the uncertainties in the long range forecasts for costs and
demands, make these decision problems very complex. Consequently, quantitative
models for economic capacity expansion planning has been the subject of intense
research since the 1960s.
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Early approaches for solving stochastic capacity expansion problems were based
on stochastic control theory [3, 12, 17, 25]. In these models, the demands are
assumed to be simple stochastic processes to render analytical tractability. With the
advent of stochastic programming and increased computational power, the use of
scenarios to model uncertainties in planning models has become increasingly pop-
ular [7, 20]. These models allow inclusion of greater logistical details in the form
of constraints than conventional dynamic programming approaches. In capacity
expansion problems however, fixed-charge expansion cost functions prevent the
use of standard stochastic programming decomposition approaches. To overcome
this difficulty, existing stochastic programming approaches for capacity planning,
either, assume linear expansion costs [5, 11, 15], or are restricted to two decision
stages [14, 24, 38]. In two-stage stochastic capacity expansion models, the first de-
cision stage constitutes determining the capacity expansion schedule for the entire
planning horizon, while scenario dependent second stage decisions constitute tak-
ing recourse actions in order to correct any infeasibilities. These recourse actions
can be interpreted as outsourcing additional capacity. Multi-stage models extend
two-stage stochastic programming models by allowing revised decisions in each
time stage based upon the uncertainty realized so far. The uncertainty information
in a multi-stage stochastic program is modeled as a multi-layered scenario tree,
and the optimization problem consists of determining an expansion schedule that
hedges against this scenario tree. A notable exception to the existing two-stage
or linear models for stochastic capacity expansion, is the work of Rajagopalan
et al. [35], where a multi-stage stochastic capacity planning model with concave
expansion costs is considered. The authors assumed a single product family with
non-decreasing deterministic demand, with the uncertainties in the timing of ca-
pacity availability. For this model, the authors exploited the problem structure to
design an efficient dynamic programming algorithm.

This paper addresses a multi-stage capacity expansion problem with uncertain-
ties in demand and cost parameters, and economies of scale in expansion costs.
Using a scenario tree approach to model the evolution of uncertain parameters, and
fixed-charge cost functions to model the economies of scale in expansion costs, we
develop a multi-stage stochastic integer programming formulation for the problem.
A reformulation of the problem is proposed using variable disaggregation to exploit
the lot-sizing substructure of the problem. We show that the proposed reformula-
tion significantly reduces the LP relaxation gap of the original large-scale integer
program. We describe a heuristic scheme to perturb the LP relaxation solutions
to produce good quality integer solutions. Finally, we outline a branch and bound
algorithm that makes use of the reformulation strategy as a lower bounding scheme,
and the heuristic as an upper bounding scheme, to solve the problem to global
optimality.

The remainder of this paper is organized as follows. The next section presents
a multi-stage stochastic integer programming formulation for the problem under
study. A reformulation strategy is developed in Section 3. In Section 4, we dis-
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cuss a heuristic for constructing feasible solutions to the problem. A branch and
bound algorithm is discussed in Section 5. Finally, some computational results are
presented in Section 6.

2. Formulation

In this section, we present a multi-stage stochastic integer programming formula-
tion for the multi-resource capacity expansion problem.

Let us first address the deterministic problem. Consider a planning horizon of
T time periods, over which capacity investment costs, and demands are assumed to
be known. The objective is to determine a schedule of timing and level of capacity
acquisitions of a set of I resources or technology types to satisfy the demand of a
product family while minimizing the total discounted cost over the entire planning
horizon. Fixed-charge cost models are assumed for the economies of scale in the
investment costs. Without loss of generality, we assume zero initial capacities.
Using xit to denote the capacity expansion of resource type i ∈ I in period t
and yit to denote the boolean variable for the corresponding capacity expansion
decision, the problem can be stated as follows:

(CAP) : min
T∑
t=1

∑
i∈I
(αitxit + βityit ) (1)

s.t. 0 � xit � Mityit t = 1, . . . , T ; i ∈ I (2)
t∑
τ=1

∑
i∈I
xiτ � dt t = 1, . . . , T (3)

yit ∈ {0, 1} t = 1, . . . , T ; i ∈ I (4)

where αit and βit are the discounted variable and fixed investment cost components,
and dt are the demand parameters, respectively. Mit are the variable upper bounds
on the capacity additions. Constraint (2) enforces that capacity acquisition levels
are bounded by the expansion bounds Mit . For the purposes of this paper, it is
assumed that Mit is sufficiently large. Constraint (3) ensures that total capacity
installed is sufficient to satisfy the demand. Finally, the objective (1) is to minimize
the total discounted expansion cost.

To extend the formulation (CAP) to a stochastic setting, we assume that the
uncertain problem parameters (αit , βit , dt ) evolve as discrete time stochastic pro-
cesses with a finite probability space. This information structure can be interpreted
as a scenario tree where the nodes n in stage (or level) t of the tree constitute the
states of the world that can be distinguished by information available up to time
stage t . Each node n of the scenario tree, except the root (n = 0), has a unique
parent a(n), and each non-terminal node n is the root of a sub-tree T (n). Thus,
T (0) denotes the entire tree. The probability associated with the state of the world
in node n is pn. St denotes the set of nodes corresponding to time stage t , and tn
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Figure 1. The Scenario Tree Notation

is the time stage corresponding to node n. The path from the root node to a node
n will be denoted by P(n). If n is a terminal (leaf) node then P(n) corresponds
to a scenario, and represents a joint realization of the problems parameters over
all periods 1, . . . , T . There are S leaf nodes corresponding to S scenarios. The
notation just described is illustrated in Figure 1.

It is worthwhile to mention that, although in principle, scenario trees can be used
to represent a wide variety of distributions and correlations; in practice, accurate
approximation of a complex stochastic process by a modest-sized scenario tree is
a very difficult problem in approximation theory [13, 18, 29, 33].

With the scenario tree specified, and considering a risk-neutral objective of
minimizing expected total cost, the stochastic capacity expansion problem can be
written as:

(SCAP) : min
∑
n∈T (0)

pn

{∑
i∈I
(αinxin + βinyin)

}
(5)

s.t. 0 � xin � Minyin n ∈ T (0); i ∈ I (6)∑
m∈P(n)

∑
i∈I
xim � dn n ∈ T (0) (7)

yin ∈ {0, 1} n ∈ T (0); i ∈ I (8)

Formulations (CAP) and (SCAP) represent the basic structure of multi-resource
capacity expansion problems. These can be extended and generalized in a number
of ways. For example, a deterministic expansion lead time of L can be modeled
in (CAP) by changing the summation in constraint (3) to

∑(t−L)+
τ=1 . Similarly, for

(SCAP), the summation in constraint (7) can be changed to
∑
m∈P(n)\(∪tnt=tn−LSt )

.
Versions of (SCAP) that consider operating decisions (i.e., how much of existing
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capacity should be committed for production), resources with unequal yield rates,
and multiple demand families have been addressed in [1]. The inclusion of invent-
ory balances is also a straightforward extension, as is the consideration of multiple
product families. Much of the subsequent developments in this paper are applicable
to these model extensions without any added conceptual difficulty.
(SCAP) is a multi-stage stochastic integer program for which no practical gen-

eral purpose solution methodology exists. In principle, with the scenario tree spe-
cified, the problem is a large scale deterministic mixed integer program and can be
solved by standard IP techniques. However, such a scheme will computationally
be very expensive. In the following sections, we develop a specialized solution
strategy to take advantage of the problem structure.

3. Problem Reformulation

This section explores lot sizing substructures in the stochastic capacity expansion
problem that can be exploited to obtain “tight” reformulations, i.e., reformulations
with small LP relaxation gaps. Similar substructures for the deterministic capacity
expansion problem have been investigated in [36]. Tighter problem reformulations
can help rounding heuristics to produce approximate integer feasible solutions of
good quality. Furthermore, the reformulations can provide better lower bounds and
help expedite convergence in exact branch and bound algorithms.

We begin by drawing the equivalence between the stochastic uncapacitated lot-
sizing problem and single resource (|I| = 1) instances of (SCAP). Next, we extend
a well known reformulation scheme for the deterministic uncapacitated lot-sizing
problem to the stochastic case. This scheme is then used to obtain reformulations
of (SCAP) with tight LP relaxation gaps.

3.1. THE STOCHASTIC LOT-SIZING PROBLEM

The deterministic uncapacitated lot sizing problem is stated as [32]:

(LSP) : min
T∑
t=1

(αtXt + βtYt + htIt )

s.t. It−1 +Xt = dt + It t = 1, . . . , T

Xt � MtYt t = 1, . . . , T

I0 = 0

Xt, It � 0, Yt ∈ {0, 1} t = 1, . . . , T ,

where Xt , It represents the production and inventory level in period t , and Yt in-
dicates whether a production set-up is carried out in period t . Problem parameters
αt, βt , ht , and dt represent the production cost, set-up cost, holding cost, and the
demand in period t .Mt are sufficiently large upper bounds on Xt . Since there is no
backlogging, these bounds can be set asMt = ∑T

τ=t dτ .
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Using the notation described for the stochastic capacity expansion problem, the
stochastic lot sizing problem can be formulated as:

(SLSP) : min
∑
n∈T (0)

pn(αnXn + βnYn + hnIn)

s.t. Ia(n) +Xn = dn + In n ∈ T (0)
Xn � MnYn n ∈ T (0)
Ia(0) = 0

Xn, In � 0, Yn ∈ {0, 1} n ∈ T (0).

Note that it is important to have a tight upper bound on Xn. It is easy to see that
a valid upper bound on Xn is given by

Mn = max
m∈ST ∩T (n)

 ∑
k∈P(m)∩T (n)

dm

 .
PROPOSITION 3.1. There is a one-to-one correspondence between the set of
feasible solution (xn, yn) of a single resource instance of (SCAP) with parameters
(αn, βn, dn), and the set of feasible solutions (Xn, Yn, In) of an instance of (SLSP)
with parameters (αn, βn, dn), where dn = (dn − maxm∈P(n)\n{dm})+.

Proof. See Appendix �
By the above result, we can solve single resource instances of (SCAP) by solv-

ing equivalent instances of (SLSP) with similar cost coefficients. For the determ-
inistic lot-sizing problem (LSP), there are well known reformulations for which
the LP relaxations yields integral solutions. These results are mainly based on the
Wagner-Whitin conditions on the structure of the optimal solution. However, when
parameter uncertainties are present, the extension of these results is not obvious. In
the next section, we investigate the reformulation scheme of Krarup and Bilde [21]
in the context of the stochastic lot sizing problem. We discover that, although the
relaxation of the reformulated problem does not yield integral solutions, the scheme
serves to significantly tighten the relaxation gap.

We conclude this section by recalling that the models (CAP) and (SCAP) in
Section 2 assume zero initial capacities. Consequently, the lot-sizing models (LSP)
and (SLSP) assume zero initial inventories. Proposition 3.1 and subsequent devel-
opments in this paper can be easily adapted to the case of existing initial capacity
by considering lot-sizing problems with existing initial inventory.
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3.2. THE KRARUP-BILDE REFORMULATION

Krarup and Bilde [21] presented a formulation of (LSP) by defining Qtτ as the
quantity produced in period t to satisfy the demand in period τ = t, . . . , T . Then:

Xt =
T∑
τ=t
Qtτ t = 1, . . . , T . (9)

Using these variables and eliminating the inventory variables, the K-B reformula-
tion of the (LSP) is as follows.

(RLSP) : min
T∑
t=1

T∑
τ=t
(αt + ht + ht+1 + · · · + hτ−1)Qtτ +

T∑
t=1

βtYt

s.t.
t∑
τ=1

Qτt = dt t = 1, . . . , T

Qtτ � dτYt t = 1, . . . , T ; τ = t, . . . , T
Qtτ � 0, Yt ∈ {0, 1}.

PROPOSITION 3.2. (cf. [32]). The solution to the LP relaxation of (RLSP) yields
0 − 1 values for the Y−variables. In addition, the image in the (X, I, Y ) space
under the transformation (9) of all points (Q, Y ) feasible in the LP relaxation of
(RLSP) produces the convex hull of (LSP).

It thus follows that one only needs to solve the LP relaxation of (RLSP) and obtain
a solution to (LSP). A number of other reformulation of (LSP) exist for which the
above result also holds [2, 27, 34].

To extend the K-B reformulation strategy to (SLSP), let us introduce variables
Qnk for all k ∈ T (n) to indicate the part of the production Xn in node n that is used
to satisfy the demand in node k. However, in the stochastic case, the production
at a node n can be used to satisfy various demand scenarios corresponding to a
particular time period. The main observation here is that the amount of production
required at a node n is the maximum total amount carried over from node n to the
successive periods. Thus we modify the K-B transformation in Eq. (9) as follows:

Xn = max
m∈ST ∩T (n)

 ∑
k∈P(m)∩T (n)

Qnk

 .
We can now reformulate (SLSP) as follows:

(RSLSP) : min
∑
n∈T (0)

pn
[
αnXn + hnIn + βnYn

]
s.t. Xn �

∑
k∈P(m)∩T (n)

Qnk m ∈ ST ∩ T (n), n ∈ T (0)
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k∈Pn

Qkn = dn n ∈ T (0)

Qnk � dkYn k ∈ T (n), n ∈ T (0)
Ia(n) +Xn = dn + In n ∈ T (0)
Ia(0) = 0
Qnk, In � 0, Yn ∈ {0, 1}.

PROPOSITION 3.3. The optimal objective value of the LP relaxation of (RSLSP)
is no smaller than that of (SLSP), and it may be strictly greater.

Proof. Given a feasible solution (Q,X, I, Y ) to the LP relaxation of (RSLSP),
we need to show that (X, I, Y ) is a feasible solution to the LP relaxation of (SLSP)
with the same objective function value.

We only need to show that the solution to (RSLSP) satisfies the constraints:
Xn � MnYn, since all other constraints are implied. Notice that

Xn = max
m∈ST ∩T (n)

 ∑
k∈P(m)∩T (n)

Qnk


= max
m∈ST ∩T (n)

 ∑
k∈P(m)∩T (n)

dk.
Qnk

dk


� max
m∈ST ∩T (n)

 ∑
k∈P(m)∩T (n)

dkYn


= MnYn

where the last two steps follow from the fact that Qnk � dkYn, and the definition
ofMn. Also note that we only consider those k ∈ P(m) ∩ T (n) for which dk > 0,
since otherwise Qnk = 0.

Thus the solution (X, Y, I ) is feasible to (SLSP), and also has the same object-
ive function value. It then follows that the optimal value of the LP relaxation of
(RSLSP) is no smaller than that of (SLSP). The numerical example below shows
that the value can indeed be strictly greater. �
EXAMPLE 1. Consider an instance of (SLSP) with zero holding costs. The un-
certain parameters evolve over the scenario tree depicted in Figure 2. The corres-
ponding problem data are provided in Table 1. The optimal IP and LP objective
values of formulations (SLSP) and (RSLSP) are compared in Table 2. We observe
that the reformulation has very small LP relaxation gap (0.79%) in comparison to
the original formulation (26.04%).

Unfortunately, unlike that of its deterministic counterpart, the LP relaxation
of the reformulation of (SLSP) does not yield integral solutions. This is because
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Figure 2. The scenario tree for Example 1

Table 1. Problem parameters

n αn βn dn pn

1 5 20 5 1

2 3 59 5 0.3

3 1 21 15 0.7

4 1 10 5 0.1

5 2 16 10 0.2

6 1 10 10 0.3

7 2 10 20 0.4

of the structural properties enjoyed by an optimal solution of (LSP) break down
for the stochastic case. Table 3 displays the optimal solution for the numerical
example. We can observe that although inventory is carried in to node 3, there is
still production in this node, thus Ia(n)Xn �= 0. Thus, the Wagner-Whitin conditions
are not satisfied by an optimal solution to the stochastic problem.

Table 2. Comparison of LP relaxation gaps

Formulation IP obj. val. LP obj. val. % Gap

(SLSP) 114.4 84.6 26.04
(RSLSP) 114.4 113.5 0.70
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Table 3. The optimal solution

n Xn Yn In

1 10 1 5
2 0 0 0
3 30 1 20
4 5 1 0
5 10 1 0
6 0 0 10
7 0 0 0

3.3. REFORMULATION OF (SCAP)

Let us now apply the above reformulation scheme to the multi-resource capacity
expansion problem (SCAP). To see the lot-sizing substructure in this case, we
introduce non-negative variables Xn = ∑

i∈I xin and binary variables zn, to de-
note the total capacity addition in node n, and the decision to add capacity to any
resource in node n, respectively. (SCAP) can then be written as:

min
∑
n∈T (0)

pn

{∑
i∈I
(αinxin + βinyin)

}
s.t. 0 � xin � Minyin n ∈ T (0); i ∈ I

yin ∈ {0, 1} n ∈ T (0); i ∈ I
Xn =

∑
i∈I
xin n ∈ T (0)

0 � Xn �
(∑
i∈I
Min

)
zn n ∈ T (0)∑

m∈P(n)
Xm � dn n ∈ T (0)

zn ∈ {0, 1} n ∈ T (0)

Note that the last three constraints of the above problem are identical to the con-
straints of a single resource instance of (SCAP). Based on the variable disaggreg-
ation scheme for stochastic lot-sizing problems, the above problem can then be
reformulated as:

min
∑
n∈T (1)

pn

[∑
i∈I
(αinxin + βinyin)

]
s.t. 0 � xin � Minyin n ∈ T (0); i ∈ I

yin ∈ {0, 1} n ∈ T (0); i ∈ I
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Xn =
∑
i∈I
xin n ∈ T (0)

Xn �
∑

k∈T (n)∩P(m)
Qnk m ∈ ST ∩ T (n);n ∈ T (0)

∑
k∈P(n)

Qkn = dn n ∈ T (0)

0 � Qnk � dkzn k ∈ T (n);n ∈ T (0)
zn ∈ {0, 1} n ∈ T (0); i ∈ I

where dn = (dn − maxm∈P(n)\n{dm})+.
Owing to the binary restrictions on zn and the constraints on Qkn, it is easily

verified that we can equivalently reformulate the above problem by substituting∑
i∈I xin for Xn, and

∑
i∈I yin for zn. Thus the reformulation of the multi-resource

(SCAP) is as follows:

(RSCAP) : min
∑
n∈T (0)

pn

[∑
i∈I
(αinxin + βinyin)

]
s.t. 0 � xin � Minyin n ∈ T (0); i ∈ I

yin ∈ {0, 1} n ∈ T (0); i ∈ I∑
i∈I
xin �

∑
k∈T (n)∩P(m)

Qnk m ∈ ST ∩ T (n);n ∈ T (0)

∑
k∈P(n)

Qkn = dn n ∈ T (0)

0 � Qnk � dk

(∑
i∈I
yin

)
k ∈ T (n);n ∈ T (0)

The following example demonstrates the tightened LP relaxations obtained by
the proposed reformulation. Further computational experiments are reported in
Section 6.

EXAMPLE 2. Consider an instance of (SCAP)with three facilities. The uncertain
parameters evolve over the scenario tree depicted in Figure 2. The corresponding
problem data are provided in Table 4. The optimal IP and LP objective values of
formulations (SCAP) and (RSCAP) are compared in Table 5. We observe that the
reformulation has significantly smaller LP relaxation gap (29.0%) in comparison
to the original formulation (50.22%).



14 SHABBIR AHMED ET AL.

Table 4. Problem parameters

n α1n α2n α3n β1n β2n β3n dn pn

0 2 1 2 10 15 5 5 1

1 1 1 1 10 30 20 15 0.3

2 3 1 2 11 5 10 10 0.7

3 1 2 1 5 10 3 5 0.1

4 2 1 1 10 3 5 10 0.2

5 2 1 3 3 10 5 10 0.3

6 1 3 2 10 5 3 20 0.4

Table 5. Comparison of LP relaxation gaps

Formulation IP obj. val. LP obj. val. % Gap

(SCAP) 34.0 16.925 50.22

(RSCAP) 34.0 24.140 29.00

4. A Heuristic Strategy

In this section, we describe a heuristic strategy to construct feasible integer solu-
tions to the stochastic capacity expansion problem (SCAP). Note that simply round-
ing up the fractional values of the boolean variables (yin) in the LP relaxation
solution provides a feasible integer solution. However, such a naive strategy might
result in very poor solutions, possibly requiring capacity additions to be carried out
in all periods. Recently, Ahmed and Sahinidis [1] developed a rounding heuristic
for an alternative formulation of (SCAP). We briefly describe this heuristic strategy
and adapt it to the formulation presented in this paper.

Let us consider an alternative formulation for (SCAP). Instead of defining the
problem variables over the nodes of the scenario tree, we define these over each in-
dividual scenario path s = 1, . . . , S. A joint realization of the problem parameters
corresponding to scenario s will be denoted by ωs := (ωs1, . . . , ω

s
T ) where ωst :=

(αsit , β
s
it , d

s
t ), with corresponding probability ps . The technological constraints (2)-

(4) in the deterministic problem (CAP) with the parameters ωs corresponding to
scenario s will be concisely denoted by X (ωs). The decision variables correspond-
ing to scenario s will be denoted by Xs := (Xs1, . . . , X

s
T ) with Xst := (xsit , y

s
it ).

The objective function (1) corresponding to scenario s will be denoted by f s(·).
The decision maker cannot distinguish between the scenarios passing through the
same node at any time stage. Consequently, the feasible solutions Xst must satisfy:

X
s1
t = Xs2t ∀(s1, s2) ∈ n, ∀n ∈ St , ∀t = 1, . . . , T .
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These conditions are known as the non-anticipativity constraints, and we shall col-
lectively denote them by N . Using this notation, we can formulate the stochastic
capacity expansion problem as follows:

(SCAP′) : min
S∑
s=1

psf s(Xs)

s.t. Xs ∈ X (ωs) ∩ N ∀s = 1, . . . , S

Observe that, in the absence of the non-anticipativity constraint N , the stochastic
problem (SCAP′) decomposes into S instances of the deterministic problem (CAP).
Ahmed and Sahinidis [1] used this observation to decompose the problem across
scenarios, then to construct integer solutions for each scenario subproblem, and
finally to re-enforce the non-anticipativity constraints to construct a feasible integer
solution to (SCAP′). The key steps of this heuristic are as follows. The details of
the method can be found in [1].

HEURISTIC A:
1. Relax the integrality requirements in X (ωs) and solve the multi-stage stochastic

linear program using standard solvers. Let X
s

be the LP relaxation solution.
Note that X

s ∈ N . If X
s ∈ X (ωs) stop, else go to Step 2.

2. For each scenario s, construct an integral solution from X
s

by shifting capacity
additions from latter to earlier periods (see [1] for details). Let Xs be this
solution. Note that Xs ∈ X (ωs). If Xs ∈ N stop, else go to Step 3.

3. Construct a solution X̂s from Xs , such that X̂s ∈ X (ωs) ∩ N . Note that the
capacity shifting step might destroy the non-anticipativity structure of the ca-
pacity expansion variables (xst ). We recover this by capacity bundling where
we set x̂sit = maxs∈n

{
xsit
}

for all s ∈ n, for all n ∈ St , for all t = 1, . . . , T . This
guarantees that the capacity acquired in any period is the same in all scenarios
of a scenario bundle. Finally, the binary variables are rounded up accordingly.

Figure 3 illustrates the above heuristic strategy for a simple three-period, four-
scenario example. The solutions obtained in each of the three phases of the heuristic
are plotted. The height of the rectangular blocks represent the capacity expansion
bounds, and the height of filling in the block represent the amount of capacity
added in the corresponding solution. Note that the LP relaxation solution satisfies
the non-anticipativity constraints. For example, the capacity additions in scenarios
2 and 3, in time period 2 are the same since these scenarios belong to the same
bundle. However, after capacity shifting (step 2), the non-anticipativity structure
is destroyed. The capacity bundling phase (step 3) restores the non-anticipativity
structure.

It is easily verified that the scenario formulation (SCAP′) is entirely equivalent
to the tree formulation (SCAP) presented in Section 2. Thus, given any solution
to one of the formulations, we can convert it to the other. Since the reformulation
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Figure 3. The heuristic strategy

(RSCAP) provides a tighter LP relaxation than (SCAP), we can apply the above
heuristic to this solution to construct an integer feasible solution to (SCAP). The
scheme is summarized as follows:

HEURISTIC B:
1. Solve the LP relaxation of (RSCAP). Let (xin, yin) denote this solution. Con-

vert this solution to the scenario formulation as follows. Let ns denote the leaf
node in the scenario tree corresponding to scenario s. Then set xsit := xin and
ysit := yin if n ∈ P(ns) and n ∈ St . The LP relaxation scenario solution is then
X
s := (xsit , ysit ).

2. Apply steps 2 and 3 in Heuristic A to construct a heuristic solution to the
scenario formulation X̂s = (̂xsit , ŷsit ) from the LP relaxation solution X

s
.

3. Construct a heuristic solution to the tree formulation (SCAP) as follows: set
x̂in := x̂sit and ŷin := ysit if n ∈ P(ns) and n ∈ St .

Ahmed and Sahinidis [1] proved that Heuristic A produces a feasible solution to
(SCAP′). From the equivalence of the two formulations, the following result then
follows immediately.

PROPOSITION 4.1. Heuristic B produces a feasible solution to (SCAP).
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The proposed heuristic can be easily improved by only shifting to periods that
offer a cost benefit. Furthermore, the strategy can potentially be integrated with
other heuristic methods such as those proposed by Fong and Srinivasan [16] and
Li and Tirupati [23]. Such improvements will only produce better quality solu-
tions. Under some standard assumptions on the parameter distributions, Ahmed
and Sahinidis [1] showed that Heuristic A is asymptotically optimal in the number
of time periods. This result implies that, as the problem size increases, the quality
of the heuristic solution also increases and eventually, for sufficiently large problem
sizes, the heuristic provides optimal solutions. Intuitively, if the demands are not
expected to vary widely (for example, if they have bounded moments), the heuristic
can be expected to have carried out enough capacity expansions in the early periods
to satisfy the most of the demand. From the equivalence of the two formulations,
Heuristic B also possesses this attractive property.

5. A Branch and Bound Algorithm

As mentioned earlier, currently there are no practical general purpose solution al-
gorithms for multi-stage stochastic integer programs. A pioneering effort in this
area is that of Carøe and Schultz [9] who proposed a branch and bound scheme
coupled with Lagrangian relaxation for scenario formulations of multi-stage sto-
chastic integer programs. In this scheme, the Lagrangian dual obtained by relaxing
the non-anticipativity constraints in the scenario formulation is solved to obtain
lower bounds. Relaxing the non-anticipativity constraints decomposes the problem
and allows each scenario sub-problem to be solved independently. A subgradient
approach is then used to improve the dual multipliers. To close the duality gap
the authors propose branching on the integer variables. In [8] and [9], the au-
thors present computational results using this algorithm for two-stage problems.
Although the method is theoretically applicable to the multi-stage case, the authors
acknowledge that owing to the increased dimensionality of the Lagrangian dual
and the branching variables, several issues regarding a successful implementation
of such an approach for the multi-stage case remain open.

In this paper, we propose to solve (SCAP) by enhancing the standard integer
programming branch and bound algorithm with the problem specific reformulation
technique and heuristic strategy described in Sections 3 and 4. In this scheme, we
solve the LP relaxation of the reformulated problem (RSCAP) to obtain tight lower
bounds. Standard stochastic linear programming decomposition schemes, such as
those implemented in solvers such as [19], can be used to solve these relaxations.
As an upper bounding routine, Heuristic B (cf. Section 4) is used to obtain good
quality feasible integer solutions. Conventional integer programming rules are used
for branching.

A potential advantage of the proposed method over that of Carøe and Schultz [9]
from an implementation point of view is that the lower bound is obtained by linear
programming rather than computationally expensive subgradient methods to solve
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the Lagrangian dual. Furthermore, the number of branching variables is fewer. The
scenario formulation of (SCAP′) that would be used in the Carøe and Schultz
algorithm requires |I| × T × S binary variables, whereas the tree formulation
(SCAP) requires |I| × |T (0)| binary variables; and |T (0)| < T × S. For example,
a binary scenario tree with T periods has S = 2T−1, and |T (0)| = (2T −1). Then if
T > 1, we have |T (0)| < T × 2T−1. On the other hand, the Lagrangian bounding
scheme of Carøe and Schultz is independent of any specialized problem structure
and provides very tight lower bounds for most problems.

6. Computational Results

In this section, we provide some computational experience using the solution stra-
tegy described in Section 5 to solve a set of 16 small instances of the multi-stage
stochastic capacity expansion problem (SCAP). A ternary scenario tree was as-
sumed with the uncertain parameters jointly realizing as one of three sets of values
in each period. Problems were generated by varying the number of time periods
from two to five and the number of facilities from one to four. Data for the problem
instances are available from the authors. Table 6 presents the time periods, tree
size, number of scenarios, number of facilities, and the number of binary variables,
continuous variables, and rows in the original formulation (SCAP) and its reformu-
lation (RSCAP). Note that although the reformulation introduces a large number of
additional continuous variables and rows, the number of binary variables is same
in both models.

We first investigate the strength of the LP relaxation gap of (RSCAP), and then
the performance of the proposed branch and bound algorithm. All computations
were carried out on an IBM RS/6000 Model 590 Workstation with 512 Mb RAM
and a 66-MHz processor. CPLEX 6.6 was used to the solve the linear and integer
programs.

6.1. COMPARISON OF LP RELAXATION GAPS

Table 7 compares the gap (from the optimal integer solution) and the CPU seconds
for the LP relaxation of the original formulation (SCAP) and the reformulation
(RSCAP). As expected, the reformulation requires higher CPU time, but provides
significantly better LP relaxation bounds.

6.2. PERFORMANCE OF THE PROPOSED BRANCH AND BOUND ALGORITHM

The proposed branch and bound algorithm was implemented by integrating Heur-
istic B with the CPLEX 6.6 MIP solver, and applying the algorithm to the refor-
mulation (RSCAP). Table 8 compares the performance of the proposed method
((RSCAP) + Heuristic) to a straightforward application of the CPLEX 6.6 MIP
solver on the original formulation (SCAP). A node limit of 100 000 was imposed
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Table 6. Problem dimensions

(SCAP) (RSCAP)

No. T |T (0)| S |I| Bin. Cont. Rows Bin. Cont. Rows

P_2_1 2 4 3 1 4 4 8 4 14 24

P_2_2 2 4 3 2 8 8 12 8 18 28

P_2_3 2 4 3 3 12 12 16 12 22 32

P_2_4 2 4 3 4 16 16 20 16 26 36

P_3_1 3 13 9 1 13 13 26 13 104 141

P_3_2 3 13 9 2 26 26 39 26 117 154

P_3_3 3 13 9 3 39 39 52 39 130 167

P_3_4 3 13 9 4 52 52 65 52 143 180

P_4_1 4 40 27 1 40 40 80 40 860 951

P_4_2 4 40 27 2 80 80 120 80 900 991

P_4_3 4 40 27 3 120 120 160 120 940 1031

P_4_4 4 40 27 4 160 160 200 160 980 1071

P_5_1 5 121 81 1 121 121 242 121 7502 7350

P_5_2 5 121 81 2 242 242 363 242 7623 7471

P_5_3 5 121 81 3 363 363 484 363 7744 7592

P_5_4 5 121 81 4 484 484 605 484 7865 7713

and the CPLEX default relative tolerance of 0.0001 was used. As can be observed
from Table 8, the proposed enhancements offer significant reductions in the num-
ber of nodes and CPU seconds. The three largest problems in the set could not
be solved within the prescribed resource limits using the straightforward CPLEX
implementation.

7. Conclusions and Future Research

The key contributions of this paper are the following:
• We have proposed a multi-stage stochastic integer programming formulation

for a general multi-resource capacity expansion problem under uncertainty.
• A reformulation scheme has been developed by exploiting special lot-sizing

sub-structure in the problem. The proposed reformulation offers significantly
tighter LP relaxation gaps than the original formulation.

• We have modified a recently proposed heuristic strategy for scenario based for-
mulations of capacity expansion problems to be applicable to the formulation
presented in this paper.
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Table 7. LP relaxation gaps

(SCAP) (RSCAP)

No. % Gap CPUs % Gap CPUs

P_2_1 22.64 0.00 2.63 0.00

P_2_2 28.79 0.01 5.22 0.01

P_2_3 34.19 0.01 13.57 0.00

P_2_4 35.14 0.00 14.10 0.01

P_3_1 21.08 0.00 2.69 0.03

P_3_2 26.43 0.01 4.33 0.03

P_3_3 31.98 0.01 12.39 0.03

P_3_4 33.31 0.00 13.08 0.03

P_4_1 19.29 0.02 2.39 0.11

P_4_2 24.44 0.02 3.01 0.13

P_4_3 30.02 0.03 9.44 0.13

P_4_4 31.49 0.04 10.10 0.14

P_5_1 19.24 0.06 2.75 0.71

P_5_2 24.03 0.11 3.03 0.78

P_5_3 29.45 0.14 8.61 0.88

P_5_4 31.00 0.20 9.13 0.97

Average 27.66 0.04 7.28 0.25

• We have proposed enhancing standard integer programing branch and bound
algorithms by integrating the reformulation scheme and the heuristic strategy
to solve the problem to global optimality.

• We have presented computational results demonstrating the effectiveness of
the reformulation and the proposed branch and bound algorithm.

The results in this paper pave the way for a number of future research aven-
ues. We assumed that the capacity expansion bounds were large enough, making
the problem “unrestricted” and allowing the exploitation of the uncapacitated lot-
sizing substructure. For the restricted case, recent results on capacitated lot-sizing
problems [28] can be investigated for possible extensions. The heuristic strategy
also has considerable room for improvement. Note that by fixing the solution cor-
responding to a parent node of the scenario tree after a single pass of the heuristic,
we can decouple the problems corresponding to the child sub-trees. The heuristic
can then be applied recursively to these sub-trees. This multi-pass version of the
heuristic can offer significantly better solutions. Furthermore, in the capacity shift-
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Table 8. Performance of CPLEX 6.6

(SCAP) (RSCAP)+Heuristic

No. Nodes CPUs Nodes CPUs

P_2_1 1 0.02 0 0.02

P_2_2 2 0.05 0 0.02

P_2_3 5 0.04 0 0.03

P_2_4 9 0.07 0 0.02

P_3_1 7 0.04 5 0.05

P_3_2 19 0.14 7 0.09

P_3_3 45 0.39 12 0.13

P_3_4 82 0.74 19 0.22

P_4_1 35 0.3 19 0.32

P_4_2 563 2.67 28 0.51

P_4_3 1822 11.57 41 0.88

P_4_4 4701 41.48 77 1.87

P_5_1 1536 20.43 193 5.9

P_5_2 100000a 784.17 492 16.94

P_5_3 100000b 1409.26 2142 90.15

P_5_4 100000c 2975.70 4728 271.91

a Gap = 0.58%, b Gap = 1.11%, c Gap = 1.74%.

ing phase of the heuristic, the non-anticipativity constraints are relaxed without any
penalties. Incorporating appropriate Lagrange multipliers in the objective can help
reduce the non-anticipativity violations and produce better solutions. The generic
capacity expansion model addressed in this paper is applicable to a wide variety of
industrial settings. We recommend future research efforts to be directed at solving
large-scale industry relevant capacity expansion problems.
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Appendix: Proof of Proposition 3.1

(⇒) Given any feasible solution (xn, yn) for (SCAP), we can construct a solution
(Xn, In, Yn) for (SLSP) by setting Xn = xn, Yn = yn, and In = ∑

m∈P(n) xm −
maxm∈P(n){dm}. We shall now argue the feasibility of such a solution.

First, note thatXn � 0 and Yn ∈ {0, 1} by construction. We next argue that In �
0. For a given node n, let us number the nodes on the path P(n) as {1, 2, . . . , n}.
Let k = argmaxm∈P(n){dm}. Note that In = ∑

m∈P(n) xm − dk. Since xn is feasible

in (SCAP), we have, for the k-th node,
∑k
m=1 xm − dk � 0. Since xm � 0 for all

m, it then follows In = ∑k
m=1 xm − dk +∑n

m=k+1 xm � 0.
It now remains to check the for the inventory balance constraints in (SLSP). For

a given node n, the left-hand side of this constraint is given by:

Ia(n) +Xn =
∑

m∈P(n)\n
xm − max

m∈P(n)\n
{dm} + xn

=
∑
m∈P(n)

xm − max
m∈P(n)\n

{dm}.

The right-hand side of this constraint is:

dn + In = (dn − max
m∈P(n)\n

{dm})+ +
∑
m∈P(n)

xm − max
m∈P(n)

{dm}.

If dn > maxm∈P(n)\n{dm}, then maxm∈P(n){dm} = dn, and both sides of the invent-
ory balance constraint are equal. Otherwise, (dn − maxm∈P(n)\n{dm})+ = 0 and
maxm∈P(n){dm} = maxm∈P(n)\n{dm}, and once again both sides of the constraint
are equal. Thus the constructed solution is feasible to (SLSP).

(⇐) Given a feasible solution (Xn, In, Yn) to (SLSP), we can construct a solution
(xn, yn) to (SCAP) by setting xn = Xn, and yn = Yn. We next argue the feasibility
of such a solution.

Note that xn � 0 and yn ∈ {0, 1} by construction. Since there are no initial
inventories, by summing up the inventory balance constraints in (SLSP) for allm ∈
P(n), we have

∑
m∈P(n) Xn �

∑
m∈P(n) dm, implying

∑
m∈P(n) xn �

∑
m∈P(n) dm.

It remains to argue that
∑
m∈P(n) dm � dn or∑

m∈P(n)
(dm − max

k∈P(m)\m
{dk})+ � dn. (10)

For a given node n, let us number the nodes on the path P(n) as {1, 2, . . . , n}.
Then, the left-hand side of (10) is

n∑
m=1

(dm − max{d1, . . . , dm−1})+ = d1 + (d2 − d1)
+ + (d3 − max{d1, d2})+ + · · ·
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+(dn − max{d1, . . . , dn−1})+
= max{d1, d2, . . . , dn}.

Since max{d1, d2, . . . , dn} � dn, inequality (10) holds for all n. Thus the construc-
ted solution is feasible to (SCAP). �
References

1. Ahmed, S. and Sahinidis, N. V. (2002), An approximation scheme for stochastic integer
programs arising in capacity expansion. To appear in Operations Research.

2. Barany, I. Van Roy, T. and Wolsey L. A. (1984), Uncapacitated lot-sizing: The convex hull of
solutions, Mathematical Programming Study 22: 32–43.

3. Bean, J. C. Higle, J. L. and Smith, R. L. (1992), Capacity expansion under stochastic demands,
Operations Research 40: S210–S216.

4. Berman, O. and Ganz, Z. (1994), The capacity expansion problem in the service industry,
Computers & Operations Research 21: 557–572.

5. Berman, O., Ganz, Z. and Wagner, J. M. (1994), A stochastic optimization model for planning
capacity expansion in a service industry under uncertian demand, Naval Research Logistics 41:
545–564.

6. Bermon, S. and Hood, S. (1999), Capacity optimization planning system (CAPS), Interfaces
29: 31–50.

7. Birge, J. R. and Louveaux, F. (1997), Introduction to Stochastic Programming. Springer, New
York, NY.

8. Carøe, C. C. (1998), Decomposition in stochastic integer programming. PhD thesis, University
of Copenhagen.

9. Carøe, C. C. and Schultz, R. (1999), Dual decomposition in stochastic integer programming,
Operations Research Letters 24: 37–45.

10. Chang, S.-G. and Gavish, B. (1993), Telecommunications network topological design and
capacity expansion: Formulations and algorithms, Telecommunication Systems 1: 99–131.

11. Chen, Z.-L., Li, S. and Tirupati, D. (2001), A scenario based stochastic programming approach
for technology and capacity planning, To appear in Computers & Operations Research, 2001.

12. David, M. H. A., Dempster, M. A. H., Sethi, S. P. and Vermes, D. (1987), Optimal capacity
expansion under uncertainty, Advances in Applied Probability 19: 156–176.
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